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Abstract
We show that the Landau quantum systems (or integer quantum Hall effect
systems) in a plane, sphere or a hyperboloid, can be explained in a complete and
meaningful way by group-theoretical considerations concerning the symmetry
group of the corresponding configuration space. The crucial point in our
development is the role played by locality and its appropriate mathematical
framework, the fibre bundles. In this way the Landau levels can be understood
as the local equivalence classes of the symmetry group. We develop a unified
treatment that supplies the correct geometric way to recover the planar case as
a limit of the spherical or the hyperbolic quantum systems when the curvature
goes to zero. This is an interesting case where a contraction procedure gives rise
to nontrivial cohomology starting from a trivial one. We show how to reduce
the quantum hyperbolic Landau problem to a Morse system using horocyclic
coordinates. An algebraic analysis of the eigenvalue equation allows us to
build ladder operators which can help in solving the spectrum under different
boundary conditions.

PACS numbers: 03.65.-w, 02.20.-a, 71.70.Di

1. Introduction

The planar Landau levels arise in the frame of quantum mechanics (QM) when a charged
particle evolves under the influence of an external constant magnetic field perpendicular to the
plane [1]. Landau quantum systems can also be generalized to other surfaces with a normal
stationary magnetic field. In this way, the spherical and hyperbolic Landau systems have been
also studied [2], but there is still a lack of a comprehensive characterization of these systems
from the point of view of their symmetry. We will try to fill the gap here by a systematic study
of such kinds of quantum systems based on their spatial symmetries.

Widespread theoretical, as well as experimental activity, has been paid to two-
dimensional (2D) quantum systems of charged particles in the last two decades. In particular,
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the quantum Hall effect [3], 2D systems of electrons subjected to strong external magnetic fields
at very low temperatures, has received a lot of attention due to its interesting and surprising
properties [4]. The first step in the understanding of such effects is simply to undertake the
study of quantum Landau systems. So, in this paper we revise the Landau problem from the
symmetry optics.

The relevant symmetry group of the magnetic field in the planar Landau system is the
Euclidean group E(2). In the same way, the associated symmetry groups of the spherical and
hyperbolic systems are SO(3) and SO(2, 1), respectively. Moreover, the configuration spaces
of such Landau systems (i.e. sphere, plane and hyperboloid) can be seen as homogeneous
spaces of their corresponding symmetry groups. Thus, we will set up the following project:
(i) to carry out a simultaneous study of these classes of Landau systems by using a unifying
formalism that will allow us to compare directly the features of all of them (in some sense,
a study of these Landau systems sharing our point of view was done in [5]); (ii) to clearly
characterize the elements of the Landau systems that can be explained exclusively in terms of
group theoretical arguments.

We shall develop the first point of this program thoroughly starting from the definition of
a general symmetry group up to the final solutions of the wave equations. In particular, we
will understand the correct way in which the planar Landau quantum system can be seen as a
limit of the spherical or hyperbolic systems when the surface curvature vanishes. This question
deserves careful attention because it displays how trivial extensions can lead to a nontrivial
one, much in the same way as the Poincaré group leads to the extended Galilei group (which
is essential in describing the mass of nonrelativistic systems).

With respect to the second point, up to now the Landau systems were defined by means of
Schrödinger equations, and their symmetries played a complementary role as a help to solve
the spectrum. Now, in our viewpoint the key object is the symmetry group itself from which
to develop a certain canonical procedure to get the quantum Landau systems. We will see
that the main clue in dealing with this problem is the concept of locality. Thus, as Bargmann
and Wigner already stressed [6], local representations (or locally operating representations) of
Lie groups of space–time transformations [7] constitute a relevant ingredient in QM. Here, we
shall show that local representations of the symmetry groups are the right approach to describe
the Landau systems (as it was done with the Euclidean group [7,8] or with the Maxwell groups
in [9]) providing us at the same time with the minimal coupling rule of interaction with the
external magnetic field. In conclusion, we can state that, from the symmetry point of view,
local equivalence is responsible for the classification of different Landau levels defined on any
surface. To show the way this is realized, and its physical implications, will be one of the main
objectives of this work.

The natural framework to write down local representations is the language of fibre bundles,
so we shall briefly consider this point in our exposition, but leave the technical details to the
quoted references in order to shorten the length of this paper.

The organization of this paper is as follows. Section 2 introduces a general group
(in fact a one-parameter family of groups) that includes the three symmetry groups mentioned
above, together with their homogeneous spaces. We also consider the central extensions of
such groups which we will call ‘magnetic Landau’ groups. In section 3 we characterize the
local representations of this general group that will be relevant to define the Schrödinger
wave equations for quantum systems supporting this symmetry group in section 4. Some
basic facts related to the formulation of gauge invariant potentials under local realizations
in the framework of fibre bundles are presented in section 5. They will allow us to give
a group-theoretical justification of the minimal electromagnetic coupling. In section 6 we
classify the elementary systems associated with the magnetic Landau groups in the sense
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of Wigner [10], i.e. an elementary quantum system is associated with a unitary irreducible
realization of the symmetry group (here we will restrict ourselves to bounded representations).
Afterwards, we decompose the local representations of the magnetic Landau groups in terms
of their elementary systems in order to get the energy spectrum and eigenfunctions of the
corresponding Landau quantum systems. In section 7 we present the variable separation of
the hyperbolic Landau system using the horocyclic coordinates of SO(2, 1). In this way we
reduce the quantum Landau problem to a system of a particle moving in a Morse potential
allowing one to understand the continuous spectrum of the hyperbolic system (this question
was previously addressed but only at a classical level). In section 8 we construct ladder
operators connecting eigenstates of consecutive eigenvalues of the spectrum (for κ �= 0 such
operators have not been considered previously up to our knowledge). These ladder operators
have some interesting properties: (i) they satisfy essentially cubic commutation relations;
(ii) they connect the Landau systems to isotropic oscillators on constant curvature surfaces;
and (iii) they allow one to derive directly the spectrum even when the wavefunctions obey
different boundary conditions (this is the case of the ‘moving states’ discussed in [5]). Finally,
section 9 displays the main results in a more physical language together with some general
remarks and comments. Some appendices have been added in order to make the work as
self-contained as possible: appendix A gives a short review of local realizations; appendix B
characterizes the local representations of the magnetic Landau groups and appendix C supplies
some basic elements of fibre bundles and gauge theories.

2. Symmetry groups of Landau quantum systems

The first step to achieve our program is to propose a unified notation by introducing a Lie
group, denoted by SOκ(3) [11], involving the three aforementioned symmetry groups, and
a homogeneous space which also includes as particular cases the three types of 2D surfaces
where the quantum Landau systems live.

2.1. Symmetry groups of constant magnetic fields

As we mentioned in the introduction the suitable symmetry groups of our Landau systems
are SO(3), E(2) and SO(2, 1). They can be dealt with in a more compact way by defining
a one-parameter family of Lie groups SOκ(3), with κ a real parameter, whose Lie algebra,
soκ(3), is generated by the infinitesimal (Hermitian) generators J01, J02 and J12 satisfying the
following Lie commutators:

[J01, J02] = i κJ12 [J12, J01] = iJ02 [J12, J02] = −iJ01. (2.1)

When κ is nonzero it can be rescaled to +1 or −1, whence we have three representative values:
+1, 0,−1. If κ = +1 we recover the Lie algebra so(3); for κ = 0 we have the Lie algebra e(2)
of the 2D Euclidean group E(2); and finally, when κ = −1, we get so(2, 1). The quadratic
Casimir of soκ(3) is Cκ = J 2

01 + J 2
02 + κJ 2

12.
The group SOκ(3) admits a linear action in the ambient space R

3, leaving invariant the
quadratic form 〈x, x〉κ = x2

0 + κx2
1 + κx2

2 , x ∈ R
3. The matrix representation (that explains

the index notation) of the generators is

J01 = i (−κE01 + E10) J02 = i (−κE02 + E20) J12 = i (−E12 + E21) (2.2)

where the 3 × 3 matrices Eij are defined by (Eij )kl = δikδjl , i, j, k, l = 0, 1, 2. In
this representation, the orbit of the point x0 = (1, 0, 0) is the 2D surface S2

κ of equation
x2

0 + κx2
1 + κx2

2 = 1. This surface is diffeomorphic to the homogeneous space SOκ(3)/SO(2),
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where SO(2) is the isotropy group of x0 spanned by J12 (the only compact generator of soκ(3)
for every value of κ). For κ = +1, 0,−1, S2

κ is the 2-sphere, S2, the Euclidean plane, E2,
and the hyperboloid, H 2, respectively. So, the parameter κ appearing in the commutation
rules (2.1) can also be interpreted as the curvature of S2

κ . In particular, if κ = 0 the metric
〈x, x〉κ is degenerate and the homogeneous space is flat (for more details see [12]).

The contraction process, that allows one to obtain E(2) from SO(3) or SO(2, 1), is
equivalent in our framework to simply take κ = 0 in (2.1). This replacement can be interpreted
geometrically as a deformation where the curvature radius R = 1/

√
κ (R = 1/

√−κ for the
hyperboloid) goes to ∞. In this way the Euclidean plane becomes the limit of the sphere or
the hyperboloid.

A useful chart of S2
κ is given by polar geodesic coordinates. Let us consider again the point

x0 = (1, 0, 0) of S2
κ , then any other point x of S2

κ is parametrized by the pair (r, θ) according
to the following action of SOκ(3):

x = e−i θ J12 e−i r J01x0. (2.3)

If κ is positive, (r, θ) ∈ (0, π/
√
κ) × (0, 2π), while for κ zero or negative (r, θ) ∈

(0,∞) × (0, 2π). So, this chart covers S2
κ except the two ‘poles’ (taking the point x0 as

the ‘north pole’ and placing the ‘south pole’ at infinity for the non-compact cases, E2 and H 2)
and the meridian joining them. The explicit expression of this coordinate system is

x0 = cos
√
κr x1 = sin

√
κr cos θ/

√
κ x2 = sin

√
κr sin θ/

√
κ. (2.4)

With this convention, the contracted 2D plane S2
κ in the limit κ → 0 is given by x0 = 1, that

is, we have chosen the contraction around the north pole x0 = (1, 0, 0).
The fundamental vector fields associated with the basis generators of soκ(3) that

correspond to the action of SOκ(3) on S2
κ are

J01(r, θ) = −i cos θ ∂r + i
√
κ

sin θ

tan
√
κr

∂θ

J02(r, θ) = −i sin θ ∂r − i
√
κ

cos θ

tan
√
κr

∂θ

J12(r, θ) = −i ∂θ .

(2.5)

These formulae are valid for any value of κ . Note that for κ < 0 we have hyperbolic functions,
while for κ = 0

lim
k→0

cos
√
κr = 1 lim

k→0

sin
√
κr√
κ

= r.

Hence, when κ = 1,−1 or 0 expressions (2.5) give the usual vector fields of so(3), so(2, 1)
or e(2), respectively. In particular, for κ = 0 we immediately obtain the Euclidean fields on
the plane:

J01(r, θ) = −i cos θ ∂r + i
sin θ

r
∂θ J02(r, θ) = −i sin θ ∂r − i

cos θ

r
∂θ

J12(r, θ) = −i∂θ .

Notice that in the Euclidean limit J01 and J02 become the generators of translations along the
Cartesian axes X and Y respectively, while J12 corresponds to the generator of rotations with
respect to the Z-axis; in this case they are usually denoted by P1, P2 and J .

The invariant measure in S2
κ is given, up to a constant factor, by

σ = sin
√
κr√
κ

dr ∧ dθ. (2.6)

In the limit κ → 0 we recover the usual Euclidean measure σ = r dr ∧ dθ .
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There are other (group) coordinates (for instance, parallel geodesic or horocyclic) that
would be of interest to analyse particular aspects. However, polar geodesic coordinates are
more suitable to handle bases of eigenfunctions of J12 for which the realization (2.5) is well
adapted.

2.2. Magnetic Landau groups

If a physical system has a symmetry groupG, in QM its symmetry transformations are described
by projective representations in the space of rays, or by representations up to a factor in the
associated Hilbert space [10, 13]. Such representations can be obtained by means of true
representations of an extended group G that Wigner called a ‘quantum mechanical symmetry
group’ (appendix A).

In our case (see appendix B)G is a central extension of (the universal covering of) SOκ(3)
by R which will be denoted SOκ(3) and in the following it will be referred to as the family of
‘magnetic Landau groups’. The basis {J 01, J 02, J 12, B} of soκ(3), the Lie algebra of SOκ(3),
includes a new generatorB corresponding to the central extension. The commutators of soκ(3)
are given by

[J 01, J 02] = i κ J 12 + iB, [J 12, J 01] = i J 02,

[J 12, J 02] = −i J 01, [., B] = 0.
(2.7)

From (2.7) it is easy to see at the level of Lie algebras that only when κ = 0 the extension is
nontrivial, giving in this case the extended Euclidean algebra e(2) [7].

The group law of SOκ(3) can be obtained from the Lie algebra (2.7), but we shall never
need it; for us it will be enough to work with the infinitesimal generators bearing in mind its
physical meaning. The second-order Casimir is

Cκ = J
2
01 + J

2
02 + κ J

2
12 + 2BJ 12. (2.8)

The homogeneous space S2
κ can also be expressed as S2

κ ≈ SOκ(3)/SO(2) =
SOκ(3)/(SO(2) ⊗ R), where SO(2) is a covering (depending on κ) of SO(2), and R is
the group generated by B. Since the extension is central, the action of the subgroup 〈B〉 on S2

κ

is trivial.

3. Local representations of the magnetic Landau groups

In appendix A the reader can find a brief review of the theory of local representations and in
appendix B we show how to build up the local representations of the magnetic groups SOκ(3),
which are the suitable ones to describe the quantum symmetries of SOκ(3). We shall present
in the following the results necessary for our development.

The local representations (A.1) of the basis generators of soκ(3) are given by Hermitian
differential operators that have the general form

Xj(x) = Xj(x) + Wj(x) B = −β (3.1)

where Xj ∈ {J 01, J 02, J 12}; Xj(x) are the fundamental fields (2.5), Wj(x) are real functions,
and β is a real number that represents the central generator B and specifies the factor system
of the realization. The final explicit expressions (obtained according to appendix B) for the
infinitesimal generators (3.1), using polar coordinates (2.4), are
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J 01 = J01(r, θ) − β versκr

√
κ sin θ

sin
√
κ r

J 02 = J02(r, θ) + β versκr

√
κ cos θ

sin
√
κ r

J 12 = J12(r, θ)

B = −β

(3.2)

where the fields J..(r, θ) are given in (2.5). We have also introduced a general versine function
versκr = 1/κ(1 − cos

√
κr) that has a well defined limit, limκ→0 versκr = r2/2.

We shall remark upon some of the important features of the above realization (3.2). (i) First
of all, it is instructive to check that expressions (3.2) indeed satisfy the commutation rules (2.7).
(ii) The (extended) fields (3.2) are smooth around the north pole x0, so that they act on functions
also differentiable there. (iii) The main point to stress here is that, as it is detailed in appendix B,
each class of local equivalence for the extended fields of the form (3.1) satisfying (2.7) is
characterized by β, where β ∈ R if κ � 0, or 2β/κ ∈ Z if κ > 0. We will assume henceforth
that 2β/κ ∈ Z, which is valid for all values of κ . The reason underlying the discretization of β
is the same as with respect to the spin: only half-integer values are allowed in the (projective)
representations of SO(3). Other values of β would lead us to a representation of the algebra,
not of the group.

The fields (3.2), defined up to a local equivalence, determine a trivial extension for κ �= 0.
When κ → 0 the extension becomes nontrivial. Following the arguments of appendix B, the
limit κ → 0 of (3.2) must be performed bearing in mind that 2β/κ ∈ Z. If we keep β = β0

fixed, this contraction is discrete since κ = 2β0/n, n ∈ N, and n → ∞.

4. Schrödinger equations for Landau systems

Once we obtain the local realizations of SOκ(3), we can characterize the quantum elementary
systems behaving under this type of symmetry transformations. Thus, we will assume that
the support space of the local realization contains the Hilbert space of wavefunctions of the
system. By using the invariant measure (2.6) and restricting ourselves to square integrable
functions, we obtain the physical states. The infinitesimal generators of the symmetry group
must have a Hermitian character in order to be identified as observables of the system; in
other words, we must consider unitary representations. Finally, the time evolution is given
by a Schrödinger equation i∂t( = Hκ(, where the Hamiltonian we are going to consider is
essentially the Casimir (2.8), Hκ = Cκ/2 (it can be redefined up to additive or multiplicative
constants). Its explicit expression after substituting in (2.8) the generators by their associated
vector fields (3.2) is

Hκ = −1

2
∂2
r − κ

2 sin2 √
κr

∂2
θ + i

(
κ β versκr

cos
√
κr

sin2 √
κr

+ β

)
∂θ

−
√
κ

2 tan
√
κr

∂r +
κ

2 sin2 √
κr

(β versκr)
2. (4.1)

In general, the local representations are reducible, each irreducible component is given
by the Casimir equation Cκ( = cκ(. Whence, by construction, each eigenspace of Hκ

supports a unitary irreducible representation (UIR) of SOκ(3), since the eigenvalue equation
Hκ(κ = εκ(κ , εκ = cκ/2, gives the irreducible subspaces of the local representation. The
description of our quantum system will be complete if we compute the spectrum, the degeneracy
of the energy levels (given by the aforementioned UIR) and a set of orthogonal eigenfunctions
generating the full Hilbert space of states.
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5. Gauge potentials and minimal coupling

In section 3 we introduced the local realizations of SOκ(3) in a direct operative way often
used in the physics literature. However, as we mentioned in section 1, the natural framework
for the local realizations is the fibre bundle theory. We shall analyse, in this section, some
properties obtained from this more general viewpoint that allows us to interpret physically
(and geometrically) what is behind the Hamiltonian (4.1) that we proposed in the preceding
section, and it will also help us to derive the minimal coupling rule for interactions. For more
details see appendix C.

5.1. Gauge invariant potentials

We can find a gauge invariant potential Aµ(x) under the action (3.2) of SOκ(3). The local
invariance condition of the potential gives the following set of differential equations:

X
µ

j (x)
∂Aν(x)

∂xµ
+ Aµ(x)

X
µ

j (x)

∂xν
− i

∂Wj(x)

∂xν
= 0 µ, ν = 1, 2,∀Xj ∈ soκ(3) (5.1)

where the fields Xj(x), and the functions Wj(x) of the local realization were defined in (3.1)
and (3.2). It can be shown that this potential is the pull-back of a global invariant connection
defined on a U(1) principal bundle whose base space is S2

κ .
The solutions to equation (5.1), taking coordinates x1 = r and x2 = θ , are

Ar = 0 Aθ = β versκr. (5.2)

Such a solution is differentiable in a chart covering S2
κ , except for the south pole (as it was

foreseeable, since the local realization was smooth there). This is the appropriate chart for our
contraction around the north pole. As usual, we can define the covariant derivatives by

Dr = −i∂r − Ar Dθ = −i∂θ − Aθ . (5.3)

Thus, the component of the invariant curvature form is

Brθ = −i [Dr,Dθ ] = sin(
√
κr)√
κ

β (5.4)

which corresponds to a magnetic field normal to S2
κ whose intensity is given by β (recall

the invariant measure (2.6)). Remark that if κ �= 0, we have taken 2β/κ ∈ Z, which
in the case κ = 1 coincides with the Dirac monopole quantization [14]. If we want this
intensity to be conserved along the limiting process κ → 0 we must take β(κ) = β0, i.e.
a constant independent of κ . With this choice the potential (5.2) has a well defined limit:
Ar = 0, Aθ = β0 r

2/2.

5.2. Minimal coupling interactions

Now we shall see how the minimal coupling rule can be introduced using arguments based on
the symmetry algebra.

Let {Xi = X
µ

i (x)∂µ} be the vector field realization (2.5) on the pseudosphere S2
κ of the

Lie algebra basis of soκ(3), and let us consider the new set of generators X∗
i = X

µ

i (x)Dµ,
with Dµ the covariant derivative (5.3). As we stated above, the Casimir operator Cκ(Xi, B) of
soκ(3)was identified (up to the factor 1/2) with the Hamiltonian of our quantum system. Now,
according to expression (C.3) of appendix C, this operator can be obtained from the Casimir
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Cκ(Xi) of soκ(3) substituting the fields Xi by X∗
i : Cκ(Xi, B) = Cκ(X

∗
i ). Making use of this

property we can rewrite the Hamiltonian (4.1) in terms of the vector fields X∗
i as

Hκ = − 1

2
D2

r − κ

sin2 √
κr

D2
θ − 1

2

√
κ

tan
√
κr

Dr

= − 1

2
∂2
r +

1

2

κ

sin2 √
κr

(−i ∂θ − β versκr)
2 − 1

2

√
κ

tan
√
κr

∂r . (5.5)

The advantage of (5.5) is that it makes explicit the minimal coupling rule since it is the
Hamiltonian of a free system on S2

κ where the derivatives have been replaced by covariant
derivatives. Therefore, (5.5) describes the interaction of a quantum system with an external
magnetic field (5.4) normal to the surface S2

κ given by the electromagnetic potential (5.2).
The limit κ → 0 of the time-independent Schrödinger equation Hκ(κ = εκ(κ is

−1

2
∂2
r ((r, θ) +

1

2 r2

(
−i ∂θ − β

r2

2

)2

((r, θ) − 1

2 r
∂r((r, θ) = ε0((r, θ). (5.6)

This is the eigenvalue equation in polar coordinates of a charged particle in the Euclidean plane
under the action of a constant magnetic field of intensity proportional to |β| perpendicular to
the plane, that is, the planar Landau system [1].

6. Eigenvalues and eigenfunctions of Landau Hamiltonians

As a first step to obtaining the spectrum and eigenfunctions of the Hamiltonian (5.5) we will
compute the UIRs of SOκ(3); afterwards, we will analyse their relationship with the local
representations determined in section 3.

6.1. Elementary Landau quantum systems

A basis of an UIR ofSOκ(3) is completely characterized by the eigenvalues and eigenvectors of
three mutually commuting operators: Hκ (= 1/2Cκ), B and J 12. Let us denote by |εκ, β,m〉
an eigenvector of these operators, i.e.,

Hκ |εκ, β,m〉 = εκ |εκ, β,m〉 J 12|εκ, β,m〉 = m|εκ, β,m〉
B|εκ, β,m〉 = −β|εκ, β,m〉.

The UIRs of the universal covering of SOκ(3) can be obtained from those of soκ(3). We
look for expressions valid for any κ-value and at the same time for bounded representations.
However, for κ < 0 the group is noncompact and there are other unitary representations (the
principal and complementary series) not considered here.

Let {J +, J−, J, B} be a ‘Cartan’ basis of soκ(3), where J± = 1/
√

2(J 01 ± iJ 02) and
J = J 12. The non-vanishing Lie brackets are now

[J, J±] = ±J± [J +, J−] = κJ + B. (6.1)

Since the representation must be unitary, then the generators must satisfy the Hermitian
relations (J±)† = J∓, J † = J, B† = B. The second-order Casimir in the new basis
reads

Cκ = 2J +J− + κ(J 2 − J ) + 2BJ − B = 2J−J + + κ(J 2 + J ) + 2BJ + B. (6.2)

There are two families of such bounded UIRs of SOκ(3) characterized as follows. One
of them is given by a lowest negative weight, −l (l ∈ Z

+), such that J−|εκ, β,−l〉 = 0, and
the other one by a highest positive weight, l ∈ Z

+, verifying J +|εκ, β, l〉 = 0.
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For the first family of UIRs the action of the generators J± on the states |εκ, β,m〉 can be
written as

J +|εκ, β,m〉 =
√
(l + m + 1)(2β + κ(l − m))/2 |εκ, β,m + 1〉

J−|εκ, β,m〉 =
√
(l + m)(2β + κ(l − m + 1))/2 |εκ, β,m − 1〉

(6.3)

with the restriction

(l + m)(2β + κ(l − m + 1)) � 0. (6.4)

This bounded representation is determined by the eigenvalue of the Casimir (6.2), labelled by
the integer l,

εlκ = κl(l + 1)/2 + β(l + 1/2). (6.5)

The features of the UIRs of the first family depending on the particular values of κ can be
summarized as follows:

• κ > 0: l ∈ Z
�0, 2β/κ ∈ Z such that −l < β/κ . The representation has dimension

2(l + β/κ) + 1 with carrier space generated by the set of eigenvectors

{|εlκ , β,m〉}l+2β/κ
m=−l . (6.6)

Therefore, there are an infinite number of levels, each one finitely degenerated.
• κ < 0: l ∈ Z

�0, 2β/κ ∈ R and l < β/|κ|. We obtain an infinite-D representation with
support space spanned by

{|εlκ , β,m〉}∞m=−l . (6.7)

There is a finite number of discrete energy levels, 0 � l < β/|κ|, each one infinitely
degenerated.

• κ = 0: l ∈ Z
�0 and β > 0. The representation is infinite-D with a basis of the support

space given by

{|εlκ , β,m〉}∞m=−l . (6.8)

In this case we have infinite discrete energy levels infinitely degenerated.

In order to take into consideration the three cases together we will assume that β > 0. In all
of them εlκ is given by (6.5).

For the second family of UIRs we have

J +|εκ, β,m〉 =
√
(l − m)(−2β + κ(l + m + 1))/2 |εκ, β,m + 1〉

J−|εκ, β,m〉 =
√
(l − m − 1)(−2β + κ(l + m))/2 |εκ, β,m − 1〉

(6.9)

with the restriction (l−m)(−2β + κ(l +m+ 1)) � 0. A bounded representation is determined
by the eigenvalue of the Casimir (6.2), labelled by the positive integer l,

εlκ = κl(l + 1)/2 − β(l + 1/2). (6.10)

Similarly to the first family we have the three following cases according with the values of κ:

• κ > 0: l ∈ Z
�0, 2β/κ ∈ Z, such that l > β/κ . Basis: {|εlκ , β,m〉}m=l

−l+2β/κ .

• κ < 0: l ∈ Z
�0, 2β/κ ∈ Z, −β > l|κ|. Basis: {|εlκ , β,m〉}m=l

−∞ .
• κ = 0: l ∈ Z

�0, β < 0. Basis: {|εlκ , β,m〉}m=l
−∞ .



2292 J Negro et al

Now it is appropriate to consider β < 0 for the three cases, while εlκ is given by (6.10). The
same comments about dimensionality and degeneration of the Landau levels made for the other
family of UIRs are also valid in this case.

At this point we can check that the contraction process works correctly for the UIRs
defined above. For instance, the finite-D representations of SO(3) contract to infinite-D ones
of the 2D Euclidean group provided that κ = 2|β|/n → 0, n ∈ N, when n → ∞ (for more
details see [15]).

It is worth remarking that the energy eigenvalues (6.5) and (6.10) include two terms. The
first of them is quadratic in l and has a geometric character through the curvature κ of the
configuration space. The second term, linear in l, is the only one that will remain in the planar
limit and has a dynamic character by means of β that was interpreted as a magnetic field.

6.2. A complete set of eigenfunctions

Once the above UIRs of SOκ(3) have been characterized we have to check whether they are
realizable as irreducible components of the local representations given in section 3.

Recall that we must restrict ourselves to differentiable wavefunctions around the north
pole. So, we can write (β,κ

l,m (r, θ) = eimθR
β,κ

l,m (r), m ∈ Z, as the wavefunction associated with

the basis element |εκ, β,m〉, i.e. 〈r, θ |εκ, β,m〉 = (
β,κ

l,m (r, θ), of a lowest weight representation
with Casimir eigenvalue (6.5) given by cκ = εlκ/2. From (3.2) the local expressions of the up
and down operators take the form

J± = i e±i θ

(
−∂r ∓ i

√
κ

tan
√
κr

∂θ ±β verκ(r)

√
κ

sin
√
κr

)
. (6.11)

For each eigenvalue, m, of J ≡ J12 we can compute the radial eigenfunctions Rβ,κ

l,m (r) quite
easily. So, the fundamental wavefunction corresponding to |εκ, β,−l〉 is determined by the
equation (

− d

dr
+

l
√
κ

tan
√
κr

− β verκ(r)

√
κ

sin
√
κr

)
R
β,κ

l,−l(r) = 0 (6.12)

whose solution (up to normalization) is

R
β,κ

l,−l(r) =
(

sin
√
κr√
κ

)l(
1 + tan2

√
κr

2

)−β/κ

. (6.13)

Once chosen β > 0, the complete function (
β,κ

l,−l(r, θ) = e−i lθR
β,κ

l,−l(r) is square integrable on
the ‘sphere’ S2

κ with respect to the invariant measure (2.6) for κ � 0, or if 0 � l < β/|κ|−1/2
for κ < 0. From this eigenfunction and using the raising operator J + we can find all the
remaining basis eigenfunctions generating the whole εlκ -eigenspace:

(
β,κ

l,−l+n(r, θ) ∝ (J +)n (
β,κ

l,−l(r, θ). (6.14)

These eigenfunctions are also square integrable provided the requirements (6.6), (6.7) of the
previous section are fulfilled besides l < β/|κ| − 1/2 when κ < 0. In this way we have
completed the search for the spectrum and eigenfunctions of the Hamiltonian (5.5) for any
value of κ .

Remark that for κ = 0 the Landau energy levels (6.5) are linear in l, εl0 = 2β (l + 1/2).
The fundamental state inside the εl0-eigenspace is obtained by taking the limit κ → 0 of (6.13),

R
β,0
l,m(r) = rle−β r2/4. (6.15)
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This can be used to derive the rest of the infinite basis eigenfunctions with the help of the shift
operators

J± = i e±i θ

(
−∂r ∓ i

r
∂θ ± β r

2

)
.

The results for the second family of UIRs are quite similar taking into account obvious
sign changes in m and β (recall in this respect that now β is negative). For instance, the
fundamental state is (β,κ

l,l (r, θ) = ei lθR
β,κ

l,l (r), where

R
β,κ

l,l (r) =
(

sin
√
κr√
κ

)l(
1 + tan2

√
κr

2

)β/κ

. (6.16)

6.3. Lowest Landau level

A case of special interest is when l = 0. Once the geometry (i.e. κ) and the external field (β)
are fixed this value corresponds to the lowest energy Landau level. From (6.14) it is easy to
show that the (radial component of the) eigenfunctions are simply given by

R
β,κ

0,m(r) = N(β, κ,m) (cos
√
κr/2)2β/κ−m

(
sin

√
κr/2√
κ

)m

(6.17)

with the normalizing coefficient N(β, κ,m) = (2(2β + κ) · · · (2β + κ − mκ)/2(m + 1))1/2.
If we further select κ = 0 the above formulae reduce to the lowest level of the planar Landau
system, whose eigenfunctions are

R
β,0
0,m(r) = N(β, 0,m) (r/2)m e−βr2/4 (6.18)

with N(β, 0,m) = (2mβm+1/2(m + 1))1/2.
The state density (degeneracy of the lth level/area) for the spherical case is

2l + 1 + 2|β|κ
4π/k

= |β|
2π

+
κ(2l + 1)

4π
. (6.19)

In the Euclidean limit (κ = 0) the state density is |β|/2π for any l in agreement with the
Landau result [1]. In the hyperbolic case the state density is also |β|/2π .

6.4. Eigenfunctions in terms of hypergeometric functions

The components Rβ,κ

l,m (r) of the basis wavefunctions can be written in terms of hypergeometric
functions. To achieve this, we start from the Schrödinger equation for the eigenvalue εlκ (6.5)(

d2

dr2
+

√
κ

tan
√
κr

d

dr
− κ

sin2 √
κr

(m − β versκr)
2 + 2εlκ

)
R
β,κ

l,m (r) = 0. (6.20)

If we change to the new variable x = Aversκr and factorize the wavefunction as

R
β,κ

l,m (r) = Am/2 versm/2
κ r

(
1 − κ

2
versκr

)β/κ−m/2
φ
β,κ

l,m (r) 4(x) = φ(r(x)) (6.21)

we can rewrite this equation as an hypergeometric-like equation

x
(

1 − κ

2A
x
) d24

β,κ

l,m(x)

dx2
+

(
1 + m − β + κ

A
x

)
d4β,κ

l,m(x)

dx
+

2εlκ − β

2A
4

β,κ

l,m(x) = 0. (6.22)

Remark that the factor function in (6.21) coincides with the Landau eigenfunctions of the
lowest level (6.17). It is also worth noting that equation (6.22) is well behaved when κ → 0
giving rise to a confluent hypergeometric equation.

We shall analyse in detail equation (6.22) according to the values of κ:
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(i) κ �= 0. Choosing A = κ/2, equation (6.22) turns into the hypergeometric expression

x(1 − x)
d24

β,κ

l,m(x)

dx2
+ (1 + m − 2(β/κ + 1)x)

d4β,κ

l,m(x)

dx
+

2εlκ − β

κ
4

β,κ

l,m(x) = 0 (6.23)

and the solutions we are looking for are given in terms of the hypergeometric function
4

β,κ

l,m(x) = F(−l, l + 1 + 2β/κ,m + 1, x). However, in order to avoid problems when
1 + m � 0 we can consider [16]

F (−l, l + 1 + 2β/κ,m + 1, x) = F(−l, l + 1 + 2β/κ,m + 1, x)

2(m + 1)

which is also solution of (6.23). The complete expression of the local eigenfunctions is

(
β,κ

l,m (r, θ) = clm(κ)
κm/2

2m/2
eimθ versm/2

κ r
(

1 − κ

2
versκr

)β/κ−m/2

×F
(
−l, l + 1 + 2β/κ,m + 1,

κ

2
versκr

)
(6.24)

where the factor clm(κ) is a normalization constant. With the measure (2.6) its value is

clm(κ) =
√
κ2(l + 1 + 2β/κ)2(2l + 2 + 2β/κ)2(l + m + 1)

4π2(2l + 1 + 2β/κ)2(l − m + 1 + 2β/κ)
. (6.25)

Since the above hypergeometric functions can also be expressed in terms of the Jacobi
functions, P (m,2β/κ−m)

l (cos
√
κr), we can rewrite (6.24) as

(
β,κ

l,m (r, θ) = clm(κ)
κm/2

2m/2
eimθ versm/2

κ r
(

1 − κ

2
versκr

)β/κ−m/2

× l!

2(l + m + 1)
P

(m,2β/κ−m)

l (cos
√
κr). (6.26)

(ii) κ = 0. Let us assume β �= 0 and choose A = β, then equation (6.22) comes into one of
the confluent hypergeometric classes

x
d24

β,κ

l,m(x)

dx2
+ (1 + m − x)

d4β,κ

l,m(x)

dx
+ l 4

β,κ

l,m(x) = 0. (6.27)

The appropriate solutions are expressed by means of the confluent hypergeometric
function [16] M(−l, m + 1, x), or M(−l, m + 1, x) = M(−l, m + 1, x)/2(m + 1).
Consequently, we obtain

(
β,0
l,m (r, θ) = clm(0)

βm/2

2m/2
eimθ rme−βr2/4M(−l, m + 1, βr2/2) (6.28)

where the normalization constant clm(0) is given by clm(0) = √
β 2(l + m + 1)/(2π l!).

In terms of Laguerre polynomials, Lm
l (βr

2/2), the solutions (β,0
l,m (r, θ) can be rewritten

as

(
β,0
l,m (r, θ) = clm(0)

βm/2

2m/2
eimθ rme−βr2/4 l!

2(l + m + 1)
Lm
l (βr

2/2). (6.29)

It can be checked that the following limits hold when κ → 0:

lim
κ→0

clm(κ)
κm/2

2m/2
= clm(0)β

m/2

lim
κ→0

versm/2
κ r

(
1 − κ

2
versκr

)β/κ−m/2
= 1

2m/2
rme−βr2/4

lim
κ→0

F
(
−l, l + 1 + 2β/κ,m + 1,

κ

2
versκr

)
= M(−l, m + 1, βr2/2).

(6.30)
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These limits prove that there exists a well defined contraction process for the local UIR
wavefunctions given by

lim
κ→0

(
β,κ

l,m (r, θ) = (
β,0
l,m (r, θ). (6.31)

The second family of UIRs admits a similar treatment. Now, factorizing

R
β,κ

l,m (r) = A−m/2vers−m/2
κ r

(
1 − κ

2
versκr

)−β/κ+m/2
φ
β,κ

l,m (r)

and performing a variable change x = Aversκr we obtain

(
β,κ

l,m (r, θ) = cl,−m(κ)
2m/2

κm/2
eimθ vers−m/2

κ r
(

1 − κ

2
versκr

)−β/κ+m/2

× l!

2(l − m + 1)
P

(−m,−2 β

κ
+m)

l (cos
√
κr) (6.32)

with cl,−m given by (6.25). This function is a solution of equation (6.23) where m and β have
been replaced by −m and −β, respectively.

7. Horocyclic coordinates and variable separation

In this section we shall perform a coordinate separation of the hyperbolic Landau quantum
system by means of horocyclic coordinates [18]. The same question, but at the classical
level in the complex plane, was addressed in [19, 20]. Nowadays the hyperbolic Landau
classical problem continues to be a matter of study from different points of view (see, for
instance, [21, 22] and references therein).

There are two points worth mentioning on this subject. The first one is that in the
convention of Miller [17] the variable separation in the quantum case is an example of
R-separability, i.e. given an equation Eψ = 0 the R-separable solutions are, in fact, standard
separable solutions of an equivalent equation E′φ = 0 with E′ = R−1ER and ψ = Rφ. The
second remark is that horocyclic coordinates under the contraction κ → 0 turn into Cartesian
coordinates in the plane.

The horocyclic coordinates (a, b) ∈ R
2 are associated with the action of the generators

J01 and J02 +
√−κJ12 of SOκ(3) over the point x0 = (1, 0, 0) of S2

κ as follows (in this section
κ < 0):

(x0, x1, x2)T = e−iaJ01 e−ib(J02+
√−κJ12)(1, 0, 0)T (7.1)

where the superindex T denotes matrix transposition and the matrix representation of the
generators J.. is given in expression (2.2). The explicit expression of this coordinate system is

x0 = cosh
√−κa − κ

b2

2
e
√−κa

x1 = sinh(
√−κa)√−κ

+ κ
b2

2
e
√−κa

x2 = b e
√−κa.

(7.2)

In the limit κ → 0 we recover the Cartesian coordinates of the plane as we mentioned above.
These horocyclic coordinates are of ‘subgroup type’ like the polar geodesic ones used in
previous sections. While the former corresponds to the reduction O(2, 1) ⊃ T , where T is
the subgroup generated by J02 +

√−κJ12, the last one is related to O(2, 1) ⊃ O(2) (for more
details see [23]).
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Using horocyclic coordinates the following time-independent Schrödinger equation of the
hyperbolic Landau systems holds:[

1

κ

(
∂

∂a
− iVa

)2

− 1√−κ

(
∂

∂a
− iVa

)
+

e−2
√−κa

κ

(
∂

∂b
− iVb

)2
]
4(a, b) = −E

κ
4(a, b)

(7.3)

where

Va = 2κβb

2 − κb2e
√−κa + 2 cosh

√−κa
Vb = β(−1 + e−2

√
κa(1 − κb2))

2 − κb2e
√−κa + 2 cosh

√−κa
(7.4)

are the electromagnetic potential components in these coordinates.
Taking under consideration the fact that the wavefunction has the form

4(a, b) = exp

[
β√−κ

(
√−κ b − 2 arctan

√−κbe
√−κa

1 + e
√−κa

)]
ψ(a)φ(b) (7.5)

and

φ(b) = eiλb λ ∈ R (7.6)

we obtain, after rescaling multiplying by κ , a new differential equation only in the variable a,
i.e. coordinates a and b allow a variable separation with λ as the separation constant[
− ∂2

∂a2
− √−κ

∂

∂a
− 1

κ
e−2

√−κa(β(e
√−κa − 1) − √−κλ)2 − E

]
ψ(a) = 0. (7.7)

Note that the differential operator J 02 +
√−κ J 12 (see expression (3.2)) is straightened out to

the form −i∂b + f (a, b), where

f (a, b) = 2 sinh(
√−κa) + κb2e

√−κa

√−κ(2 − κe
√−κa + 2 cosh(

√−κa))

corresponds to the term W02(x) of J 02 in (3.2). In order to eliminate this function we have
introduced the phase (7.5) of 4(a, b), which performs the R-separation and it is defined by
exp(

∫
f (a, b) db). The operator J 01 given by (3.2) becomes J 01 = −i∂a + βb.

In the limit κ → 0 of equation (7.7) we recover the harmonic oscillator Schrödinger
equation of unit mass, frequency ω = |β|, energy E/2 and origin a = λ/β.

Equation (7.7) can be set into the standard expression[
− ∂2

∂a2
−
(
E′ − β2

κ
(−e−2

√−κa + 2e−√−κa)

)]
ψ(a) = 0 (7.8)

with

E′ = E − β2

√−κ
+
κ

4
(7.9)

by means of the following transformations:

• coordinate translation a → a−α/
√−κ , with eα = (β +

√−κλ)2 and sign(β) = sign(λ),
• ψ(a) → e−√−κ/2ψ(a),
• new coordinate translation a → a − γ /

√−κ , where |β| = eγ .
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Equation (7.8) corresponds to the Schrödinger equation of a particle of unit mass moving in a
Morse potential β2/2κ(−e−2

√−κa + 2e−√−κa) [1].
As it is well known, the energy spectrum of the Morse potential has two parts: one discrete

(E′ < 0) and the other continuous (E′ � 0). Hence, we have from (7.9) that the energy for
the continuous spectrum of the Landau problem corresponds to

E � β2

√−κ
− κ

4
. (7.10)

To obtain the discrete spectrum we proceed as follows. The variable change ξ =
−(2

√
β2/κ)e−√−κa and the factorization ψ(a) = e−ξ/2ξ sf (ξ) give the equation

ξf ′′(ξ) + (2s + 1 − ξ)f ′(ξ) + lf (ξ) = 0 (7.11)

where s = √
E′/κ and l = −

√
β2/κ − (s + 1/2). The confluent hypergeometric function

f (ξ) = M(−l, 2s + 1, ξ) with l ∈ Z
�0 is a suitable solution of equation (7.11). The energy

spectum is

El = El

2
= |β|

(
l +

1

2

)
+
κ

2
l(l + 1) (7.12)

that agrees with expressions (6.5) and (6.10). The number of Landau levels is finite since

0 � l <
|β|
|κ| − 1

2
(7.13)

as expected from the discussion presented in section 6.2.

8. Algebraic analysis of Landau equations

8.1. Ladder operators for energy levels

For the planar Landau systems, besides the (shift) operators that act inside each energy level
changing only the values ofm, there are also other types of (ladder) operators connecting states
of different energies. We shall show in the following that the Landau systems with κ �= 0
(thus, including the spherical and hyperbolic systems) also admit ladder operators such that in
the limit κ → 0 come into those associated with the planar case.

Let us multiply the eigenvalue equation (6.20) by the function (sin2 √
κr)/κ . The resulting

differential equation

El Rβ,κ

l,m (r) ≡
(

sin2 √
κr

κ

d2

dr2
+

sin
√
κr cos

√
κr√

κ

d

dr
− (m − β versκr)

2

+
εlκ sin2 √

κr

κ

)
R
β,κ

l,m (r) = 0 (8.1)

can be factorized as follows:{(
sin

√
κr√
κ

d

dr
+ µl cos

√
κr + νl

)(
sin

√
κr√
κ

d

dr
− µl cos

√
κr − νl

)
+ δl

}
R
β,κ

l,m (r) = 0

(8.2)

with

µl = β

κ
+ l νl = −β

κ
+
β(m + l)

β + κl
δl = 2βl(m + l)

β + κl
+
β2(m + l)2

(β + κl)2
− m2 + l2.

(8.3)
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So, the factorization of the second-order differential operator El (8.1) can also be written
schematically in the form

El = A+
l A

−
l + δl (8.4)

where the label l corresponds to the energy value εlκ in equation (6.5) keeping fixed κ and m.
It can be checked (for instance, through the symmetry change l → −l− 2β/κ − 1), according
to the previous notation, that

El−1 = A−
l A

+
l + δl = A+

l−1A
−
l−1 + δl−1. (8.5)

This means that the operator A−
l connects the eigenfunction space of eigenvalue εlκ to the one

corresponding to εl−1
κ , while A+

l acts in the opposite direction. In fact, when A±
l do not spoil

the normalization conditions, they will link the radial eigenfunctions Rβ,κ

l,m (r) and R
β,κ

l−1,m(r),
up to a factor. By means of the operator set {A±

l } we can define free-index operators A± [17]
with commutation rules

[A−, A+] = C(L) (8.6)

where the involved operators in (8.6) when acting on R
β,κ

l,m (r) must be read in the form

[A−, A+] = A−
l+1A

+
l+1 − A+

l A
−
l C(L) = δl − δl+1 (8.7)

where L is a diagonal operator, LR
β,κ

l,m = l R
β,κ

l,m .
In the limit κ → 0 all the elements in (8.2), (8.3) are well defined and we recover the

planar Landau ladder operators:

A±
l → r

d

dr
∓ β

2
r2 ± (2l + m) δl → 4l2 + 4lm. (8.8)

Now, the so-obtained free-index operators {A+, A−, L}, for κ = 0, close a Lie algebra
isomorphic to so(2, 1). However, when κ �= 0, as can be seen from (8.4) and (8.6), these
operators generate an associative algebra but not a Lie algebra.

There is a freedom in normalizing the operators {A+, A−} of (8.7), so that if we change to
the set {Ã+

l = √
β + κlA+

l , Ã
−
l = A−

l

√
β + κl}, the new pair {Ã+, Ã−} will now satisfy cubic

commutation relations. This is the kind of algebra related to the isotropic oscillator in curved
spaces discussed in references [24–26]. Such a connection seems very suggestive since as it
is known the Landau system in the plane is closely related to the 2D oscillator.

8.2. Annihilation lines and solution sectors

We shall study some consequences of the factorization (8.2) that can help in computing the
eigenfunctions of the Landau wave equation by a new procedure. This section can be seen as
an application of the refined factorization method [27, 28].

The main role of our discussion is played by the expression of δl in (8.3). Although
apparently complicated, it is responsible for the spectrum ‘shape’ of the Landau systems in a
way that will be precised below. Let us consider the solutions in l of the equation

δl = 2βl(m + l)

β + κl
+
β2(m + l)2

(β + κl)2
− m2 + l2 = 0. (8.9)

For these values, according to (8.2), the states ψ−
l annihilated by A−

l , A−
l ψ

−
l = 0, satisfy the

equation (8.1) Elψ−
l = 0, in other words, they are solutions of the Landau eigenequation. In

the same way the reasoning follows through for the solutions of δl+1 = 0. In this case the
states ψ+

l such that A+
l+1ψ

+
l = 0 will be also solutions of (8.1).

Based on these considerations, once fixed κ , the solutions of δl = 0 (δl+1 = 0) in the
plane (m, l) will be called annihilation lines of A− (A+). These lines provide immediate
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solutions of the Landau systems, but it is still necessary to specify carefully which ones are
normalizable. In this case such states will constitute vacuum states that can be used to build
the whole spectrum by applying ladder operators. It is also important to determine when the
action of such operators will lead us out of the normalizable sector.

The solutions to the equation δl = 0 are straight lines. For each of these lines we can
build the operators A−

l according to (8.2)–(8.4) and find the cases where the states ψ−
l are

normalizable. The results are summarized below depending on the κ values (we have always
assumed that β > 0):

• (κ = 0)

solutions ψ−
l normalizable if

(i) l = −m m � 0
(ii) l = 0 m � 0

(8.10)

• (κ > 0)

solutions ψ−
l normalizable if

(i) l = −m m � 0
(ii) l = 0 0 � m � 2β/κ
(iii) l = −2β/κ never
(iv) l = m − 2β/κ m � 2β/κ .

(8.11)

Since the UIRs of SOκ(3) (κ > 0), computed in section 6.1, restrict the parameter values
to 2β/κ ∈ Z

+, l ∈ Z
+, −l � m � 2β/κ , we see that they coincide with those displayed in

the above display. In fact, we can check that the normalizable eigenfunctions ψ−
l defined

on the annihilation lines are the same than those previously found in sections 6.2 and 6.3.
Therefore, the shift and ladder operators are consistent in the sense that they act in the
same space of physical states.

• (κ < 0)

solutions ψ−
l normalizable if

(i) l = −m β/κ + 1/2 < m � 0
(ii) l = 0 0 � m

(iii) l = −2β/κ never
(iv) l = m − 2β/κ never.

(8.12)

The same comments can be made with respect to this display: all the restrictions and
wavefunctions are consistent with the unitary representations of SOκ(3) with κ < 0.

The sector of physical eigenstates bounded by these lines are depicted in figure 1. The
parameters associated with the normalizable wavefunctions that constitute a lattice inside such
sectors are shown schematically in figure 2.

In order to look for the annihilation lines of the operator A+ one can use the symmetry
l → −l − 2β/κ − 1 to get

(i′) l = m − 2β/κ − 1 (ii′) l = −2β/κ − 1,

(iii′) l = −1 (iv′) l = −m − 1.
(8.13)

These lines can be used to give an equivalent description for the unitary representations
corresponding to highest weight l ∈ Z

− quoted in section 6.1, so we will not refer to them any
longer. The graphs of physical sectors, lines and states are symmetric, with respect to the l

axis, to the cases derived from A−.
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l = – m

0

l = – 1

l = – m – 1

l = 0

l = m – 2β / k

l = m – 2β / k – 1

l = – 2β / k

l = – 2 β / k – 1

00

l

m

Figure 1. Physical sectors in grey for κ > 0 (left), and κ < 0 (right), together with annihilation
lines for A− (solid lines) and A+ (dashed lines).

m

l

l = m
0

l = m – 2 β / k

l

m0

Figure 2. Lattice of normalizable states for κ > 0 (left), and κ < 0 (right).

8.3. Moving states

If we exclude the north pole of S2
κ (or both, if κ > 0), then the set of local realizations of the

Lie algebra soκ(3) acting on differentiable functions is bigger, since it is parametrized by two
real labels b and λ, as it is shown in appendix B.

Let us concentrate on the case κ �= 0. The θ -component of the invariant gauge potential
is Aθ = b/κ − λ cos(

√
κr), hence changes in the parameter b lead to the same field (see

appendix C and section 5.1). Moreover, if we keep the notation of previous sections λ = β/κ ,
now the potentials can be rewritten as Aθ = β/κ versκ(r)+ ρ with ρ = b/κ − λ+ n. Also, we
can perform a gauge transformation in the class of differentiable functions changing b/κ into
b/κ + n, n ∈ Z. Therefore, the classes of gauge equivalent potentials can be characterized by
a real parameter 0 � ρ < 1 [29].

We can change the point of view and leave one potential fixed for each field (choosing
for instance ρ = 0) but defining different classes of carrier spaces characterized by the
wavefunctions satisfying the boundary condition

((r, θ + 2π) = ei2πα((r, θ) 0 � α < 1. (8.14)

So, we have transferred the parameter ρ, labelling the classes of gauge potentials, to a phase
ei2πα of the wavefunctions. For any α we have a differential realization of the Lie algebra
soκ(3) with an invariant gauge potential, but no longer a realization of the group SOκ(3).
Nevertheless, we obtain a solvable system, whose eigenfunctions are the so-called ‘moving
states’, which have interest in the interpretation of the Hall effect [5]. Now, the equation for
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m

l

l = m
0

α

α

n = l – 2β / k
m

l

α

0

Figure 3. Lattice of normalizable states with aperiodic boundary conditions (α �= 0) for κ > 0
(left), and κ < 0 (right).

the spectrum keeps the same form as (5.5) or equivalently (8.1) but where the parameter m
must be substituted by m + α.

In this case all the considerations about the ladder operator method also remain valid with
the same annihilation lines except that the physical vacuums on these lines are parametrized by
m = n + α, n ∈ Z, keeping the restrictions (8.10)–(8.12). However, there are some properties
that have changed drastically. When α = 0 each physical sector is invariant under the action
of the operators {J±, A±} (for κ < 0, in a two-fold way), and each state is connected with
any other by means of such operators as we see in the above section. But when α �= 0 each
physical sector is broken into subsectors with the following modifications: (i) the states of
each subsector are linked by means of {J±, A±}, but states belonging to different subsectors
are not connected any more. (ii) Each subsector is not invariant under all the shift and ladder
operators, so that the action of some of them may lead to non-physical states. These properties
are illustrated separately in figure 3 for κ > 0 and κ < 0. Note that all these features can be
obtained, of course, in the frame of the hypergeometric equation given in section 6.4, but we
would loose track of the shift and ladder operators that are so useful in describing the change
in the spectrum.

From figure 3 one can easily understand the ‘index’ [5] associated with each energy level.
This index is defined as the difference between the number of states that join and leave an
energy level when the parameter α increases by a period. For κ � 0 the index is 1, but in the
compact case (κ > 0) the index is 0.

9. Remarks and conclusions

In order to physically interpret our results, we will consider dimensions for the Hamiltonian
Hκ = C/2 with the Casimir given in (2.8). By means of a multiplicative factor and the
identification

β = τq
|B|
h̄c

(9.1)

where q is the charge of the physical system, |B| is the intensity of the magnetic field and
τ = +1 or −1 indicates that the magnetic field points in or out the direction of J12, we can
rewrite Hκ in the form

Hκ = h̄2

2m0
(J 2

01 + J 2
02 + κJ 2

12) − τ
h̄q

m0
|B|J12. (9.2)
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The spectrum of the Hamiltonian (9.2) is

Eκ
l = |q|h̄

m0c
|B|

(
l +

1

2

)
+
h̄2κ

2m0
l(l + 1). (9.3)

Note that we have put together expressions (6.5) and (6.10). The second term of the energy (9.3)
has a marked geometric meaning since it depends on κ which is related to the curvature radius,
R, of the configuration space (|κ| = 1/R2). In the limit κ → 0 this term disappears as is the
case in the Euclidean plane.

When κ �= 0 we can consider a monopole with an associated radial magnetic field B. The
Dirac quantization condition [14] gives

|B| = h̄n

|e|R2
= h̄n|κ|

|e| (9.4)

with n denotes a natural number and e the elementary negative charge. Note that if we require
that in the limit κ → 0 the field B remains finite, n → ∞ in order to keep the term κn constant.

Now the spectrum is

E
n,η

l = |q|h̄
m0c

|B|
(
l +

1

2

)
+ η

h̄|e||B|
2m0cn

l(l + 1) (9.5)

where η = +1 or −1 according to the configuration space has positive or negative curvature,
respectively.

The Landau systems considered in this paper can be obtained from the relevant symmetry
groups of the involved magnetic fields by means of their local realizations. Each irreducible
component inside a class of local realizations has labels (β, l, κ) whose meaning is the
following: (i) a real parameter β proportional to the intensity of an external magnetic field
interacting with the quantum system (this intensity is quantized for κ > 0, which implies the
quantization of the magnetic charge); (ii) a positive integer l that determines the energy of the
Landau level and characterizes the bounded (discrete) representations of the magnetic groups;
and (iii) a real label κ , measuring the curvature of the 2D configuration space, whose standard
values κ = 1, 0,−1 correspond to the three Landau systems, spherical, planar and hyperbolic,
respectively. The expressions in terms of κ facilitates the comparison among these systems
showing their analogies and differences as well. Besides this, such expressions have sense
for any real value of κ . This property tells us how to correctly connect the spherical and/or
hyperbolic systems to the well known planar Landau system by the contraction procedure
κ → 0. Note, as we mentioned before, that κ also shows how the geometry of the configuration
space contributes to the energy eigenvalues by means of the term κl(l + 1).

To summarize, we have attached a physical meaning to all the parameters labelling each
class of local realizations up to gauge equivalence. Let us insist here on the role played
by the local character of this classification. Once fixed κ , there are several choices for the
remaining parameters, β and l, giving rise to (globally) equivalent irreducible representations.
For instance, if κ > 0, as long as l+β/κ = j , with j being a fixed positive half-integer we will
always get (2j + 1)-D equivalent irreducible representations of SU(2), the universal covering
of SO(3). However, different elections of the pairs (β, l) fulfilling such a condition do not
belong to the same class of local equivalence. This is the reason why they should be considered
as describing non-equivalent physical systems, e.g., systems with different energy (l) evolving
under a different magnetic field (β). In mathematical terms we would say that, for κ > 0, the
hypergeometric functions include in several ways each representation of SU(2). To see the
meaning of this point more explicitly take, for instance, κ = 1, and make the following two
choices: (1) (l = j, β = 0); and (2) (l = 0, β = j). In the first case the Landau energy level
is E(1) = (j + 1)j/2, while in the second one E(2) = j/2, so both systems are not equivalent
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Figure 4. Density probability |Rβ,κ=1
l,m (r)|2 of the eigenfunctions m = 0,±1,±2 (|R0,κ=1

l,m (r)|2 =
|R0,κ=1

l,−m (r)|2) in the representation l = 2, β = 0 (left), and those with m = 0, . . . , 4 for
l = 0, β = 2 (right); r ∈ [0, π ].
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Figure 5. Density probability |R2,κ
0,m(r)|2 of the eigenfunctionsm = 0, . . . , 4 of the representations

l = 0, β = 2 for κ = 1/2, r ∈ [0,
√

2π ] (left), and for κ = 0, r ∈ [0,+∞) (right).

from a physical point of view. Figure 4 displays the density probability corresponding to each
of the five eigenfunctions for these two cases when j = 2. This is another way to make explicit
the local inequivalence of both sets of eigenfunctions.

It is also interesting to see how the initial eigenfunctions starting from the sphereSκ=1 ≡ S2

evolve into those defined in the plane Sκ=0 ≡ E2. We illustrate this behaviour for the radial
density of the wavefunctions characterized by l = 0, m = 0, . . . , 4 and the values κ = 1,
r ∈ [0, π ] in figure 4 (right), κ = 1/2, r ∈ [0,

√
2π ] in figure 5 (left), and κ = 0, r ∈ [0,+∞)

in figure 5 (right).
The continuous spectrum of the hyperbolic Landau quantum systems can be easily

understood through horocyclic coordinates that allow one to transform these hyperbolic
systems into Morse systems. These coordinates display R-separability, however they contract
to Cartesian coordinates on the plane.

From the symmetry group we have derived operators, that leave invariant each eigenspace,
but we also have obtained ladder operators {A±} (not related to the space symmetry) linking
consecutive eigenspaces εlκ → εl±1

κ . These new operators act in the same lattice of physical
states defined by the group generators {J±}. The main interest of the ladder operators is that
they show the link of Landau systems with oscillators on curved spaces and allow one to
understand in a simple way the spectrum for quasi-periodic wavefunctions or moving states.
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Appendix A. Local realizations of symmetry groups

In QM the elements g of the symmetry group G of a quantum system are represented by local
unitary operators U(g) acting on the space of wavefunctions ψ defined on the space–time
manifold (a homogeneous space of G) X in the form

ψ ′(x ′) ≡ (U(g)ψ)(g x) = A(g, x)ψ(x) g ∈ G, x ∈ X (A.1)

where A(g, x) is a matrix-valued function. In the particular case of one-component
wavefunctions A(g, x) is simply a phase function, i.e. A(g, x) = eiζ(g,x) (in the following
we will only consider one-component wavefunctions).

The operators U(g) (A.1) close, in general, not a true representation but a projective (or
‘up to a factor’) representation of G [13] that, henceforth, we shall call local realization,

U(g2)U(g1) = ω(g2, g1)U(g2g1) g2, g1 ∈ G. (A.2)

The function ω : G × G → U(1) is the factor system of the realization and it is a 2-cocycle,
i.e. ω ∈ Z2(G,U(1)). The notation ω(g2, g1) = exp{i ξ(g2, g1)} ∈ U(1) is often used, where
ξ(g2, g1) ∈ R is called the exponent of ω. Only if ω(g2, g1) = 1,∀g2, g1 ∈ G, the realization
U is, in fact, a true representation.

The equivalence of local realizations must keep the local character and it is called gauge,
or local, equivalence. Given two local realizations U and U ′ of G, they are said to be gauge
equivalent if there is a function λ : G → U(1) and a linear operator T acting locally in the
carrier space, i.e. [Tf ](x) = T (x)f (x), with T (x) a phase factor, such that

U ′(g) = λ(g)T U(g)T −1 ∀g ∈ G. (A.3)

Their corresponding phase functions are related by

eiζ ′(g,x) = λ(g)T (gx)eiζ(g,x)T −1(x). (A.4)

The factor systems ω and ω′ associated with two equivalent realizations, U and U ′ of G, are
said to be equivalent; they satisfy

ω′(g2, g1) = λ−1(g2, g1)λ(g2)λ(g1)ω(g2, g1) ∀g2, g1 ∈ G. (A.5)

In particular, a factor system is trivial if it is equivalent to 1; in other words, it is a 2-coboundary,
ω ∈ B2(G,U(1)). The quotient H2(G,U(1)) = Z2(G,U(1))/B2(G,U(1)) is the second
cohomology group of G and it takes part in the characterization of the equivalence classes of
the unitary irreducible projective representations of G.

The classification of all the local realizations up to gauge equivalence has been solved
in general terms (see [30] and references therein). As a first step the local realizations are
linearized, e.g., instead of computing directly the representations up to a factor of G we can
get them from the linear local representations of a new group G. The local representations U
of G originate the local realizations U of G once a section s : G → G, has been chosen and
provided that U |Ĥ2(G,U(1)) ⊂ U(1). Then, the realization U associated with the representation

U is given by

U(g) : = U(s(g)). (A.6)

The group G is a central extension of G by an Abelian group A. It can be shown that A
is the dual of (a subgroup of) the second cohomology group of G, Ĥ2(G,U(1)). Therefore,
a necessary ingredient is H2(G,U(1)) whose computation can be performed by solving the
equivalent problem of the central extensions of G by U(1) [31]. If G is simple (such as it
is SO(3)) the representation group G is simply the universal covering group (SU(2) in this
case).
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Appendix B. Local representations of the magnetic Landau groups

In our particular case, SOκ(3) has only a nontrivial central extension when κ = 0 described
by the commutator [J01, J02] = λI , the other two commutators are nonzero and the possible
extension parameters λij related to them can be reabsorbed by an equivalence. In conclusion,
H2(soκ=0(3),R) = R, and H2(soκ(3),R) = 0 if κ �= 0. In any case, even when κ �= 0,
we shall take into account the (trivial) extension [J01, J02] = iκJ12 + λI , in order to have
a common formalism for any κ-value. The group SOκ(3) used to build the realizations of
SOκ(3) according to appendix A will be referred to as the ‘magnetic Landau group’. Its Lie
algebra, soκ(3), is an extension of soκ(3) by R, with Lie commutators (now the central element
is called B)

[J 01, J 02] = iκ J 12 + iB, [J 12, J 01] = iJ 02,

[J 12, J 02] = −J 01, [., B] = 0.
(B.1)

Now we are in the position to characterize the classes of local realizations of SOκ(3) up
to gauge equivalence in terms of the local representations of SOκ(3).

Theorem. The local realizations,Uλ,β , ofSOκ(3) are obtained by means of the representations
of SOκ(3) induced from the 1D representations

Dλ,b(φ, ζ ) = e−i(λφ+bζ ) b, λ ∈ R (B.2)

of the Abelian isotropy subgroup of x0, generated by J 12 and B.

The induced representations can be straightforwardly computed (see [7] where the local
realizations for the Euclidean group are worked out). So, we supply below the representations
of the soκ(3) generators (3.1), with κ �= 0, obtained by induction from (B.2):

J01 = J01(r, θ) −
(
λ − b

κ
cos

√
κr

) √
κ sin θ

sin
√
κ r

J02 = J02(r, θ) +

(
λ − b

κ
cos

√
κr

) √
κ cos θ

sin
√
κ r

J12 = J12(r, θ), B = −b.

(B.3)

Here, some remarks concerning expressions (B.3) are appropriate:

(i) κ �= 0. The label λ in the representation (B.2) of SO(2) must be a half-integer for κ > 0
(the universal covering of SO(3) has centre Z2) or real for κ < 0 (the corresponding
universal covering has centre Z). We will take a half-integer value to include both cases.
The value of λ determines a class of local equivalence, while b is an irrelevant real
parameter that can be gauged away. However, we can choose b in an appropriate way: if
we take λ = b/κ ≡ β/κ , the generators (B.3) become differentiable in the north pole. A
second reason for this choice is given below.

(ii) κ = 0. In this case λ is irrelevant (it can be arbitrarily changed by means of a
pseudoequivalence (A.3)), but the parameter b ∈ R now becomes significant and
determines the class of local realization. If we look at the realization (B.3) of the generators
for κ �= 0 we see that it does not have a well defined limit when κ → 0. If we want to obtain
the correct nontrivial expressions for κ = 0 in this way we must choose λ = b/κ ≡ β/κ ,
as stated above. With this choice we have only one parameter, β, that determines the local
class for any κ . This is the final result shown in (3.2).
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Appendix C. Fibre bundles and local representations

Let us consider the principal bundle SOκ(3)(S2
κ , π, SO(2) ⊗ R), with total space SOκ(3),

base space S2
κ , projection π : SOκ(3) → S2

κ and structure group SO(2) ⊗ R, generated by
{J12, B}. Each irreducible 1D representation, Dλ,β , of the isotropy subgroup, SO(2) ⊗ R,
of x0 allows us to build up an associated vector bundle, EDβ,λ

(S2
κ , πE,C), whose fibre is the

support space, C, of Dβ,λ, where SOκ(3) acts in a natural way. This action on the vector
bundle translated to the linear space of bundle sections, i.e. Borel maps f : S2

κ → E (which
may be identified with the wavefunctions presented in section 3) defines the induced local
representations, and the restriction to SOκ(3), by means of the section s : SOκ(3) → SOκ(3),
gives the local realizations. The gauge equivalence defined in the wavefunction space has its
counterpart in terms of automorphisms of the vector bundle [32, 33].

It can be shown [33,34] that there is an invariant connection,L, under the action of SOκ(3)
on the principal bundle SOκ(3)(S2

κ , π, SO(2)⊗ R). The pull-back of L on the base space S2
κ

is represented on the associated vector bundle by the one-form A = Aµ(x) dxµ. The invariant
condition expressed in terms of A is [34],

LXA − i dW = 0 ∀X ∈ soκ(3) (C.1)

where LX denotes the Lie derivative of the vector field X(x). Making use of the fields (B.3)
we arrive at the potential

Ar = 0 Aθ = b/κ − λ cos
√
κr. (C.2)

The limit κ → 0 is not defined but, if in agreement with the considerations of appendix B, we
take λ = b/κ ≡ β/κ we obtain a well behaved potential (5.2).

A significant property of an invariant connection on a principal bundle is the following
one. Let us write the Lie commutators of the above-mentioned basis (2.5) of the Lie algebra
soκ(3) in the form

[Xi,Xj ] = ckijXk (C.3)

where the structure constants ckij are given in (2.1). Let Xi be the implementation of the vector
fields Xi of soκ(3) as elements of soκ(3) according to the vector field realization (3.2). Then,
if we define the new set of generators X∗

i = Xi(x)
µDµ with Dµ the covariant derivatives,

i.e. the horizontal lifts of the fields Xi = X
µ

i (x)∂µ of soκ(3), the following commutators are
satisfied:

[Xi,X
∗
j ] = ckijX

∗
k (C.4)

where the coefficients ckij coincide with the structure constants of (C.3).
The commutation relations (C.4) suggest that if Cκ(Xj ) denotes the Casimir of SOκ(3),

then Cκ(X
∗
i ) is a quadratic Casimir of SOκ(3). So, it may differ with Cκ(Xj ) in a constant,

but incidentally, in our case both coincide.
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